3.7.58 \(\int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx\) [658]

3.7.58.1 Optimal result
3.7.58.2 Mathematica [A] (verified)
3.7.58.3 Rubi [A] (verified)
3.7.58.4 Maple [B] (verified)
3.7.58.5 Fricas [C] (verification not implemented)
3.7.58.6 Sympy [F]
3.7.58.7 Maxima [F]
3.7.58.8 Giac [F]
3.7.58.9 Mupad [F(-1)]

3.7.58.1 Optimal result

Integrand size = 25, antiderivative size = 214 \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx=-\frac {4 b \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{a^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (a^2-2 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a^2 \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

output
2*b^2*sin(d*x+c)*sec(d*x+c)^(1/2)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)-4*b 
*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2 
*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/ 
2)/a^2/d/(a+b*sec(d*x+c))^(1/2)+2*(a^2-2*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2) 
/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))* 
(a+b*sec(d*x+c))^(1/2)/a^2/(a^2-b^2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec( 
d*x+c)^(1/2)
 
3.7.58.2 Mathematica [A] (verified)

Time = 0.73 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.77 \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {\sec (c+d x)} \left (\left (a^3+a^2 b-2 a b^2-2 b^3\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+b \left (-2 \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+a b \sin (c+d x)\right )\right )}{a^2 (a-b) (a+b) d \sqrt {a+b \sec (c+d x)}} \]

input
Integrate[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)),x]
 
output
(2*Sqrt[Sec[c + d*x]]*((a^3 + a^2*b - 2*a*b^2 - 2*b^3)*Sqrt[(b + a*Cos[c + 
 d*x])/(a + b)]*EllipticE[(c + d*x)/2, (2*a)/(a + b)] + b*(-2*(a^2 - b^2)* 
Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)] + 
 a*b*Sin[c + d*x])))/(a^2*(a - b)*(a + b)*d*Sqrt[a + b*Sec[c + d*x]])
 
3.7.58.3 Rubi [A] (verified)

Time = 1.57 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.07, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.640, Rules used = {3042, 4334, 27, 3042, 4523, 3042, 4343, 3042, 3134, 3042, 3132, 4345, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4334

\(\displaystyle \frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 \int -\frac {a^2-b \sec (c+d x) a-2 b^2}{2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a^2-b \sec (c+d x) a-2 b^2}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a^2-b \csc \left (c+d x+\frac {\pi }{2}\right ) a-2 b^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4523

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx}{a}-\frac {2 b \left (a^2-b^2\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx}{a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}-\frac {2 b \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4343

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {2 b \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {2 b \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4345

\(\displaystyle \frac {\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{a \sqrt {a+b \sec (c+d x)}}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sqrt {a+b \sec (c+d x)}}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 b \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}}{a \left (a^2-b^2\right )}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {\frac {2 \left (a^2-2 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {4 b \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {a+b \sec (c+d x)}}}{a \left (a^2-b^2\right )}\)

input
Int[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)),x]
 
output
((-4*b*(a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/ 
2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(a*d*Sqrt[a + b*Sec[c + d*x]]) + (2* 
(a^2 - 2*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x 
]])/(a*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]))/(a*(a^2 - 
 b^2)) + (2*b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[a + 
 b*Sec[c + d*x]])
 

3.7.58.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 4334
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[b^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)* 
((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 
 - b^2))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) 
 - b^2*(m + n + 1) - a*b*(m + 1)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x 
]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, 
 -1] && IntegersQ[2*m, 2*n]
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4523
Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d 
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[A/a   I 
nt[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Simp[(A*b - a*B) 
/(a*d)   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ 
[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
 
3.7.58.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(924\) vs. \(2(256)=512\).

Time = 7.88 (sec) , antiderivative size = 925, normalized size of antiderivative = 4.32

method result size
default \(\frac {2 \left (\sqrt {\frac {a -b}{a +b}}\, a^{2} \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-2 \sqrt {\frac {a -b}{a +b}}\, b^{2} \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a^{2}+2 \sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a b -\sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) a^{2}+2 \sqrt {-\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{a +b}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}\, \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) b^{2}-\sqrt {\frac {a -b}{a +b}}\, a^{2} \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-2 \sqrt {\frac {a -b}{a +b}}\, a b \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-2 \sqrt {\frac {a -b}{a +b}}\, b^{2} \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right ) \sqrt {\frac {a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}{d \sqrt {\frac {a -b}{a +b}}\, \left (a +b \right ) a^{2} \left (a \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-b \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-a -b \right ) \sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}}\) \(925\)

input
int(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
2/d/((a-b)/(a+b))^(1/2)/(a+b)/a^2*(((a-b)/(a+b))^(1/2)*a^2*(1-cos(d*x+c))^ 
3*csc(d*x+c)^3-2*((a-b)/(a+b))^(1/2)*b^2*(1-cos(d*x+c))^3*csc(d*x+c)^3+(-( 
a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b) 
)^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1 
/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2+2*(-(a*(1-cos(d*x+c 
))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-co 
s(d*x+c))^2*csc(d*x+c)^2+1)^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+ 
c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b-(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^ 
2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc( 
d*x+c)^2+1)^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),( 
-(a+b)/(a-b))^(1/2))*a^2+2*(-(a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x 
+c))^2*csc(d*x+c)^2-a-b)/(a+b))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^(1 
/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^ 
(1/2))*b^2-((a-b)/(a+b))^(1/2)*a^2*(-cot(d*x+c)+csc(d*x+c))-2*((a-b)/(a+b) 
)^(1/2)*a*b*(-cot(d*x+c)+csc(d*x+c))-2*((a-b)/(a+b))^(1/2)*b^2*(-cot(d*x+c 
)+csc(d*x+c)))*((a*(1-cos(d*x+c))^2*csc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d* 
x+c)^2-a-b)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)/(a*(1-cos(d*x+c))^2*c 
sc(d*x+c)^2-b*(1-cos(d*x+c))^2*csc(d*x+c)^2-a-b)/(-((1-cos(d*x+c))^2*csc(d 
*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)
 
3.7.58.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 565, normalized size of antiderivative = 2.64 \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx=\frac {6 \, a^{2} b^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \sqrt {2} {\left (-5 i \, a^{2} b^{2} + 4 i \, b^{4} + {\left (-5 i \, a^{3} b + 4 i \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - \sqrt {2} {\left (5 i \, a^{2} b^{2} - 4 i \, b^{4} + {\left (5 i \, a^{3} b - 4 i \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 3 \, \sqrt {2} {\left (i \, a^{3} b - 2 i \, a b^{3} + {\left (i \, a^{4} - 2 i \, a^{2} b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + 3 \, \sqrt {2} {\left (-i \, a^{3} b + 2 i \, a b^{3} + {\left (-i \, a^{4} + 2 i \, a^{2} b^{2}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}{3 \, {\left ({\left (a^{6} - a^{4} b^{2}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} b - a^{3} b^{3}\right )} d\right )}} \]

input
integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")
 
output
1/3*(6*a^2*b^2*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos(d*x + c))* 
sin(d*x + c) - sqrt(2)*(-5*I*a^2*b^2 + 4*I*b^4 + (-5*I*a^3*b + 4*I*a*b^3)* 
cos(d*x + c))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*( 
9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) 
 - sqrt(2)*(5*I*a^2*b^2 - 4*I*b^4 + (5*I*a^3*b - 4*I*a*b^3)*cos(d*x + c))* 
sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^ 
3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) + 3*sqrt(2)*( 
I*a^3*b - 2*I*a*b^3 + (I*a^4 - 2*I*a^2*b^2)*cos(d*x + c))*sqrt(a)*weierstr 
assZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassP 
Inverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos 
(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) + 3*sqrt(2)*(-I*a^3*b + 2*I*a*b^ 
3 + (-I*a^4 + 2*I*a^2*b^2)*cos(d*x + c))*sqrt(a)*weierstrassZeta(-4/3*(3*a 
^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a 
^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a 
*sin(d*x + c) + 2*b)/a)))/((a^6 - a^4*b^2)*d*cos(d*x + c) + (a^5*b - a^3*b 
^3)*d)
 
3.7.58.6 Sympy [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

input
integrate(1/sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(3/2),x)
 
output
Integral(1/((a + b*sec(c + d*x))**(3/2)*sqrt(sec(c + d*x))), x)
 
3.7.58.7 Maxima [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate(1/((b*sec(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)
 
3.7.58.8 Giac [F]

\[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

input
integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(1/((b*sec(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)
 
3.7.58.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int(1/((a + b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(1/2)),x)
 
output
int(1/((a + b/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(1/2)), x)